WatchyWatchFace/lib/Rtc_Pcf8563/Rtc_Pcf8563.cpp
Lewis Jackson 29fa5486cb
All checks were successful
Compile / Compile (push) Successful in 4m27s
Use local bugfixed Rtc_Pcf8563 library
2023-05-31 04:04:58 +03:00

740 lines
19 KiB
C++

/*****
* NAME
* Pcf8563 Real Time Clock support routines
* AUTHOR
* Joe Robertson, jmr
* orbitalair@bellsouth.net
* http://orbitalair.wikispaces.com/Arduino
* CREATION DATE
* 9/24/06, init - built off of usart demo. using mikroC
* NOTES
* HISTORY
* 10/14/06 ported to CCS compiler, jmr
* 2/21/09 changed all return values to hex val and not bcd, jmr
* 1/10/10 ported to arduino, jmr
* 2/14/10 added 3 world date formats, jmr
* 28/02/2012 A. Pasotti
* fixed a bug in RTCC_ALARM_AF,
* added a few (not really useful) methods
* 22/10/2014 Fix whitespace, tabs, and newlines, cevich
* 22/10/2014 add voltLow get/set, cevich
* 22/10/2014 add century get, cevich
* 22/10/2014 Fix get/set date/time race condition, cevich
* 22/10/2014 Header/Code rearranging, alarm/timer flag masking
* extern Wire, cevich
* 26/11/2014 Add zeroClock(), initialize to lowest possible
* values, cevich
* 22/10/2014 add timer support, cevich
*
* TODO
* x Add Euro date format
* Add short time (hh:mm) format
* Add 24h/12h format
******
* Robodoc embedded documentation.
* http://www.xs4all.nl/~rfsber/Robo/robodoc.html
*/
#include <Arduino.h>
#include "Rtc_Pcf8563.h"
Rtc_Pcf8563::Rtc_Pcf8563(void)
{
Wire.begin();
Rtcc_Addr = RTCC_R>>1;
}
Rtc_Pcf8563::Rtc_Pcf8563(int sdaPin, int sdlPin)
{
Wire.begin(sdaPin, sdlPin);
Rtcc_Addr = RTCC_R>>1;
}
/* Private internal functions, but useful to look at if you need a similar func. */
byte Rtc_Pcf8563::decToBcd(byte val)
{
return ( (val/10*16) + (val%10) );
}
byte Rtc_Pcf8563::bcdToDec(byte val)
{
return ( (val/16*10) + (val%16) );
}
void Rtc_Pcf8563::zeroClock()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0); // start address
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.write((byte)0x00); //set seconds to 0 & VL to 0
Wire.write((byte)0x00); //set minutes to 0
Wire.write((byte)0x00); //set hour to 0
Wire.write((byte)0x01); //set day to 1
Wire.write((byte)0x00); //set weekday to 0
Wire.write((byte)0x81); //set month to 1, century to 1900
Wire.write((byte)0x00); //set year to 0
Wire.write((byte)0x80); //minute alarm value reset to 00
Wire.write((byte)0x80); //hour alarm value reset to 00
Wire.write((byte)0x80); //day alarm value reset to 00
Wire.write((byte)0x80); //weekday alarm value reset to 00
Wire.write((byte)SQW_32KHZ); //set SQW to default, see: setSquareWave
Wire.write((byte)0x0); //timer off
Wire.endTransmission();
}
void Rtc_Pcf8563::clearStatus()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0);
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.endTransmission();
}
/*
* Read status byte
*/
byte Rtc_Pcf8563::readStatus2()
{
getDateTime();
return getStatus2();
}
void Rtc_Pcf8563::clearVoltLow(void)
{
getDateTime();
// Only clearing is possible on device (I tried)
setDateTime(getDay(), getWeekday(), getMonth(),
getCentury(), getYear(), getHour(),
getMinute(), getSecond());
}
/*
* Atomicly read all device registers in one operation
*/
void Rtc_Pcf8563::getDateTime(void)
{
/* Start at beginning, read entire memory in one go */
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT1_ADDR);
Wire.endTransmission();
/* As per data sheet, have to read everything all in one operation */
uint8_t readBuffer[16] = {0};
Wire.requestFrom(Rtcc_Addr, 16);
for (uint8_t i=0; i < 16; i++)
readBuffer[i] = Wire.read();
// status bytes
status1 = readBuffer[0];
status2 = readBuffer[1];
// time bytes
//0x7f = 0b01111111
volt_low = readBuffer[2] & RTCC_VLSEC_MASK; //VL_Seconds
sec = bcdToDec(readBuffer[2] & ~RTCC_VLSEC_MASK);
minute = bcdToDec(readBuffer[3] & 0x7f);
//0x3f = 0b00111111
hour = bcdToDec(readBuffer[4] & 0x3f);
// date bytes
//0x3f = 0b00111111
day = bcdToDec(readBuffer[5] & 0x3f);
//0x07 = 0b00000111
weekday = bcdToDec(readBuffer[6] & 0x07);
//get raw month data byte and set month and century with it.
month = readBuffer[7];
if (month & RTCC_CENTURY_MASK)
century = true;
else
century = false;
//0x1f = 0b00011111
month = month & 0x1f;
month = bcdToDec(month);
year = bcdToDec(readBuffer[8]);
// alarm bytes
alarm_minute = readBuffer[9];
if(B10000000 & alarm_minute)
alarm_minute = RTCC_NO_ALARM;
else
alarm_minute = bcdToDec(alarm_minute & B01111111);
alarm_hour = readBuffer[10];
if(B10000000 & alarm_hour)
alarm_hour = RTCC_NO_ALARM;
else
alarm_hour = bcdToDec(alarm_hour & B00111111);
alarm_day = readBuffer[11];
if(B10000000 & alarm_day)
alarm_day = RTCC_NO_ALARM;
else
alarm_day = bcdToDec(alarm_day & B00111111);
alarm_weekday = readBuffer[12];
if(B10000000 & alarm_weekday)
alarm_weekday = RTCC_NO_ALARM;
else
alarm_weekday = bcdToDec(alarm_weekday & B00000111);
// CLKOUT_control 0x03 = 0b00000011
squareWave = readBuffer[13] & 0x03;
// timer bytes
timer_control = readBuffer[14] & 0x03;
timer_value = readBuffer[15]; // current value != set value when running
}
void Rtc_Pcf8563::setDateTime(byte day, byte weekday, byte month,
bool century, byte year, byte hour,
byte minute, byte sec)
{
/* year val is 00 to 99, xx
with the highest bit of month = century
0=20xx
1=19xx
*/
month = decToBcd(month);
if (century)
month |= RTCC_CENTURY_MASK;
else
month &= ~RTCC_CENTURY_MASK;
/* As per data sheet, have to set everything all in one operation */
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write(RTCC_SEC_ADDR); // send addr low byte, req'd
Wire.write(decToBcd(sec) &~RTCC_VLSEC_MASK); //set sec, clear VL bit
Wire.write(decToBcd(minute)); //set minutes
Wire.write(decToBcd(hour)); //set hour
Wire.write(decToBcd(day)); //set day
Wire.write(decToBcd(weekday)); //set weekday
Wire.write(month); //set month, century to 1
Wire.write(decToBcd(year)); //set year to 99
Wire.endTransmission();
// Keep values in-sync with device
getDateTime();
}
/**
* Get alarm, set values to RTCC_NO_ALARM (99) if alarm flag is not set
*/
void Rtc_Pcf8563::getAlarm()
{
getDateTime();
}
/*
* Returns true if AIE is on
*
*/
bool Rtc_Pcf8563::alarmEnabled()
{
return getStatus2() & RTCC_ALARM_AIE;
}
/*
* Returns true if AF is on
*
*/
bool Rtc_Pcf8563::alarmActive()
{
return getStatus2() & RTCC_ALARM_AF;
}
/* enable alarm interrupt
* whenever the clock matches these values an int will
* be sent out pin 3 of the Pcf8563 chip
*/
void Rtc_Pcf8563::enableAlarm()
{
getDateTime(); // operate on current values
//set status2 AF val to zero
status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_TIMER_TF;
//enable the interrupt
status2 |= RTCC_ALARM_AIE;
//enable the interrupt
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
}
/* set the alarm values
* whenever the clock matches these values an int will
* be sent out pin 3 of the Pcf8563 chip
*/
void Rtc_Pcf8563::setAlarm(byte min, byte hour, byte day, byte weekday)
{
getDateTime(); // operate on current values
if (min <99) {
min = constrain(min, 0, 59);
min = decToBcd(min);
min &= ~RTCC_ALARM;
} else {
min = 0x0; min |= RTCC_ALARM;
}
if (hour <99) {
hour = constrain(hour, 0, 23);
hour = decToBcd(hour);
hour &= ~RTCC_ALARM;
} else {
hour = 0x0; hour |= RTCC_ALARM;
}
if (day <99) {
day = constrain(day, 1, 31);
day = decToBcd(day); day &= ~RTCC_ALARM;
} else {
day = 0x0; day |= RTCC_ALARM;
}
if (weekday <99) {
weekday = constrain(weekday, 0, 6);
weekday = decToBcd(weekday);
weekday &= ~RTCC_ALARM;
} else {
weekday = 0x0; weekday |= RTCC_ALARM;
}
alarm_hour = hour;
alarm_minute = min;
alarm_weekday = weekday;
alarm_day = day;
// First set alarm values, then enable
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_ALRM_MIN_ADDR);
Wire.write((byte)alarm_minute);
Wire.write((byte)alarm_hour);
Wire.write((byte)alarm_day);
Wire.write((byte)alarm_weekday);
Wire.endTransmission();
Rtc_Pcf8563::enableAlarm();
}
void Rtc_Pcf8563::clearAlarm()
{
//set status2 AF val to zero to reset alarm
status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_TIMER_TF;
//turn off the interrupt
status2 &= ~RTCC_ALARM_AIE;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
}
/**
* Reset the alarm leaving interrupt unchanged
*/
void Rtc_Pcf8563::resetAlarm()
{
//set status2 AF val to zero to reset alarm
status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_TIMER_TF;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
}
// true if timer interrupt and control is enabled
bool Rtc_Pcf8563::timerEnabled()
{
if (getStatus2() & RTCC_TIMER_TIE)
if (timer_control & RTCC_TIMER_TE)
return true;
return false;
}
// true if timer is active
bool Rtc_Pcf8563::timerActive()
{
return getStatus2() & RTCC_TIMER_TF;
}
// enable timer and interrupt
void Rtc_Pcf8563::enableTimer(void)
{
getDateTime();
//set TE to 1
timer_control |= RTCC_TIMER_TE;
//set status2 TF val to zero
status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_ALARM_AF;
//enable the interrupt
status2 |= RTCC_TIMER_TIE;
// Enable interrupt first, then enable timer
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)timer_control); // Timer starts ticking now!
Wire.endTransmission();
}
// set count-down value and frequency
void Rtc_Pcf8563::setTimer(byte value, byte frequency, bool is_pulsed)
{
getDateTime();
if (is_pulsed)
status2 |= 0x01 << 4;
else
status2 &= ~(0x01 << 4);
timer_value = value;
// TE set to 1 in enableTimer(), leave 0 for now
timer_control |= (frequency & RTCC_TIMER_TD10); // use only last 2 bits
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)timer_control);
Wire.write((byte)timer_value);
Wire.endTransmission();
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
enableTimer();
}
// clear timer flag and interrupt
void Rtc_Pcf8563::clearTimer(void)
{
getDateTime();
//set status2 TF val to zero
status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_ALARM_AF;
//turn off the interrupt
status2 &= ~RTCC_TIMER_TIE;
//turn off the timer
timer_control = 0;
// Stop timer first
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)timer_control);
Wire.endTransmission();
// clear flag and interrupt
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
}
// clear timer flag but leave interrupt unchanged */
void Rtc_Pcf8563::resetTimer(void)
{
getDateTime();
//set status2 TF val to zero to reset timer
status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
status2 |= RTCC_ALARM_AF;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)status2);
Wire.endTransmission();
}
/**
* Set the square wave pin output
*/
void Rtc_Pcf8563::setSquareWave(byte frequency)
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_SQW_ADDR);
Wire.write((byte)frequency);
Wire.endTransmission();
}
void Rtc_Pcf8563::clearSquareWave()
{
Rtc_Pcf8563::setSquareWave(SQW_DISABLE);
}
const char *Rtc_Pcf8563::formatTime(byte style)
{
getTime();
switch (style) {
case RTCC_TIME_HM:
strOut[0] = '0' + (hour / 10);
strOut[1] = '0' + (hour % 10);
strOut[2] = ':';
strOut[3] = '0' + (minute / 10);
strOut[4] = '0' + (minute % 10);
strOut[5] = '\0';
break;
case RTCC_TIME_HMS:
default:
strOut[0] = '0' + (hour / 10);
strOut[1] = '0' + (hour % 10);
strOut[2] = ':';
strOut[3] = '0' + (minute / 10);
strOut[4] = '0' + (minute % 10);
strOut[5] = ':';
strOut[6] = '0' + (sec / 10);
strOut[7] = '0' + (sec % 10);
strOut[8] = '\0';
break;
}
return strOut;
}
const char *Rtc_Pcf8563::formatDate(byte style)
{
getDate();
switch (style) {
case RTCC_DATE_ASIA:
//do the asian style, yyyy-mm-dd
if (century ){
strDate[0] = '1';
strDate[1] = '9';
}
else {
strDate[0] = '2';
strDate[1] = '0';
}
strDate[2] = '0' + (year / 10 );
strDate[3] = '0' + (year % 10);
strDate[4] = '-';
strDate[5] = '0' + (month / 10);
strDate[6] = '0' + (month % 10);
strDate[7] = '-';
strDate[8] = '0' + (day / 10);
strDate[9] = '0' + (day % 10);
strDate[10] = '\0';
break;
case RTCC_DATE_US:
//the pitiful US style, mm/dd/yyyy
strDate[0] = '0' + (month / 10);
strDate[1] = '0' + (month % 10);
strDate[2] = '/';
strDate[3] = '0' + (day / 10);
strDate[4] = '0' + (day % 10);
strDate[5] = '/';
if (century){
strDate[6] = '1';
strDate[7] = '9';
}
else {
strDate[6] = '2';
strDate[7] = '0';
}
strDate[8] = '0' + (year / 10 );
strDate[9] = '0' + (year % 10);
strDate[10] = '\0';
break;
case RTCC_DATE_WORLD:
default:
//do the world style, dd-mm-yyyy
strDate[0] = '0' + (day / 10);
strDate[1] = '0' + (day % 10);
strDate[2] = '-';
strDate[3] = '0' + (month / 10);
strDate[4] = '0' + (month % 10);
strDate[5] = '-';
if (century){
strDate[6] = '1';
strDate[7] = '9';
}
else {
strDate[6] = '2';
strDate[7] = '0';
}
strDate[8] = '0' + (year / 10 );
strDate[9] = '0' + (year % 10);
strDate[10] = '\0';
break;
}
return strDate;
}
void Rtc_Pcf8563::initClock()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0); // start address
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.write((byte)0x81); //set seconds & VL
Wire.write((byte)0x01); //set minutes
Wire.write((byte)0x01); //set hour
Wire.write((byte)0x01); //set day
Wire.write((byte)0x01); //set weekday
Wire.write((byte)0x01); //set month, century to 1
Wire.write((byte)0x01); //set year to 99
Wire.write((byte)0x80); //minute alarm value reset to 00
Wire.write((byte)0x80); //hour alarm value reset to 00
Wire.write((byte)0x80); //day alarm value reset to 00
Wire.write((byte)0x80); //weekday alarm value reset to 00
Wire.write((byte)0x0); //set SQW, see: setSquareWave
Wire.write((byte)0x0); //timer off
Wire.endTransmission();
}
void Rtc_Pcf8563::setTime(byte hour, byte minute, byte sec)
{
getDateTime();
setDateTime(getDay(), getWeekday(), getMonth(),
getCentury(), getYear(), hour, minute, sec);
}
void Rtc_Pcf8563::setDate(byte day, byte weekday, byte month, bool century, byte year)
{
getDateTime();
setDateTime(day, weekday, month, century, year,
getHour(), getMinute(), getSecond());
}
void Rtc_Pcf8563::getDate()
{
getDateTime();
}
void Rtc_Pcf8563::getTime()
{
getDateTime();
}
bool Rtc_Pcf8563::getVoltLow(void)
{
return volt_low;
}
byte Rtc_Pcf8563::getSecond() {
return sec;
}
byte Rtc_Pcf8563::getMinute() {
return minute;
}
byte Rtc_Pcf8563::getHour() {
return hour;
}
byte Rtc_Pcf8563::getAlarmMinute() {
return alarm_minute;
}
byte Rtc_Pcf8563::getAlarmHour() {
return alarm_hour;
}
byte Rtc_Pcf8563::getAlarmDay() {
return alarm_day;
}
byte Rtc_Pcf8563::getAlarmWeekday() {
return alarm_weekday;
}
byte Rtc_Pcf8563::getTimerControl() {
return timer_control;
}
byte Rtc_Pcf8563::getTimerValue() {
// Impossible to freeze this value, it could
// be changing during read. Multiple reads
// required to check for consistency.
uint8_t last_value;
do {
last_value = timer_value;
getDateTime();
} while (timer_value != last_value);
return timer_value;
}
byte Rtc_Pcf8563::getDay() {
return day;
}
byte Rtc_Pcf8563::getMonth() {
return month;
}
byte Rtc_Pcf8563::getYear() {
return year;
}
bool Rtc_Pcf8563::getCentury() {
return century;
}
byte Rtc_Pcf8563::getWeekday() {
return weekday;
}
byte Rtc_Pcf8563::getStatus1() {
return status1;
}
byte Rtc_Pcf8563::getStatus2() {
return status2;
}
unsigned long Rtc_Pcf8563::getTimestamp(){
getDateTime(); // update date and time
unsigned long timestamp = 0;
// Convert years in days
timestamp = (year-epoch_year)*365; // convert years in days
if((year-epoch_year)>1) // add a dy when it's a leap year
{
for(unsigned char i = epoch_year; i<year;i++)
{
if(isLeapYear(century, i)) timestamp++; // add a day for each leap years
}
}
if(month>2&&isLeapYear(century, year)) timestamp++; // test for the year's febuary
// add months converted in days
if(month>1) timestamp += months_days[month-2];
// add days
timestamp += (day-epoch_day);
timestamp*= 86400; // convert days in seconds
// convert time to second and add it to timestamp
unsigned long timeTemp = hour*60+ minute;
timeTemp *=60;
timeTemp += sec;
timestamp += timeTemp; // add hours +minutes + seconds
timestamp += EPOCH_TIMESTAMP; // add epoch reference
return timestamp;
}